[b][/b]
[i][/i]
[u][/u]
[code][/code]
[quote][/quote]
[spoiler][/spoiler]
[url][/url]
[img][/img]
[video][/video]
Smileys
sleeping
tongue
huh
whistling
wacko
w00t
love
unsure
mellow
thumbup
angry
thumbsup
pinch
question
rolleyes
thumbdown
sad
squint
smile
wink
cool
confused
attention
evil
biggrin
cursing
crying
blink
[pre][/pre]
Farben
[rot][/rot]
[blau][/blau]
[gruen][/gruen]
[orange][/orange]
[lila][/lila]
[weiss][/weiss]
[schwarz][/schwarz]
dnfsdd880
| Zuletzt Online: 10.01.2022
avatar
Registriert am:
10.01.2022
Beschreibung
The Effect of a Wrist Brace on Injury Patterns


We compared patterns of bony and ligamentous injury with distal radial fractures

in braced and unbraced wrists using 20 paired fresh cadaveric upper extremi ties. A

commercially available wrist brace was placed on one wrist in each pair. Specimens

were then placed in a fast-loading gravity-driven device and subjected to loads

averaging 16 kg from an average height of 78 cm. Postfracture radiographs were

obtained, the spec imens were dissected, and fracture patterns and liga mentous

integrity were assessed. The following frac ture types were produced: distal radial

fractures (eight unbraced, seven braced) and intraarticular (seven un braced, four

braced). Radiographically, seven un braced wrists demonstrated carpal bone fracture

and one braced wrist demonstrated carpal fractures. Eight unbraced and three braced

wrists sustained carpal intrinsic ligament injuries, four unbraced and one braced

wrists demonstrated extrinsic ligament injuries. More capsular tears occurred in the

unbraced group (N = than in the braced group (N = 1). This model demonstrated a

difference in the patterns of injury in unbraced and braced wrists subjected to the

same mechanical conditions, which suggests that use of a wrist brace may alter

patterns of wrist injury.

Braces and splints can be useful for acute injuries, chronic conditions, and the

prevention of injury. There is good evidence to support the use of some braces and

splints; others are used because of subjective reports from patients, relatively low

cost, and few adverse effects, despite limited data on their effectiveness. The

unloader (valgus) knee

brace
is recommended for pain reduction in patients with osteoarthritis of the

medial compartment of the knee. Use of the patellar brace for patellofemoral pain

syndrome is neither recommended nor discouraged because good evidence for its

effectiveness is lacking. A knee immobilizer may be used for a limited number of acute

traumatic knee injuries. Functional ankle braces are recommended rather than

immobilization for the treatment of acute ankle sprains, and semirigid ankle braces

decrease the risk of future ankle sprains in patients with a history of ankle sprain.

A neutral wrist splint worn full-time improves symptoms of carpal tunnel syndrome.

Close follow-up after bracing or splinting is essential to ensure proper fit and use.

Am Fam Physician 2007;75:342–8. Copyright ? 2007 American Academy of Family

Physicians.)

Family physicians often must make decisions regarding the use of braces or splints

in the management of musculoskeletal disorders. Bracing can be useful for acute

injuries, and also for chronic conditions and in the prevention of injury. The purpose

of braces and splints is to improve physical function, slow disease progression, and

diminish pain. They can be used to immobilize an unstable joint or fracture, to unload

a portion of a joint and improve pain and function, to eliminate range of motion in

one direction, or to modify range of motion in one or more directions. They do not

replace a good rehabilitative program, and the entire spectrum of treatment options

should be explored and used as needed.

Accurate diagnosis of the injury is important in determining whether a brace or

splint is indicated. Generally, splints are for short-term use. Excessive, continuous

use of a brace or splint can lead to chronic pain and stiffness of a joint or to

muscle weakness. However, long-term use of some braces, such as a

knee support, can help

prevent progression of pain attributable to osteoarthritis of the knee.

Given the limited evidence on the use of braces and splints, it is particularly

important to use a patient-centered approach, with consideration for individual

patient's expectations and concerns and an understanding of the nature of their

activity. For example, for high school and collegiate athletes, there are specific

rules on the types of protective equipment, splints, and braces that may be worn

during competition.1 Close follow-up after bracing or splinting is essential to ensure

proper fit and use.

The most common types of braces and splints used in primary care and the quality

of evidence to support current recommendations are discussed in the following.

Relatively few studies on bracing have been published, and most are not randomized

controlled trials. A Cochrane systematic review4 identified only one randomized

controlled trial.2 In this study, 119 patients who had osteoarthritis associated with

varus deformity of the knee were randomized to receive usual treatment, unloader knee

brace, or neoprene sleeve to evaluate the effect of these therapies on functional

status and quality of life.2 Although both the sleeve and the brace reduced pain and

improved function, greater benefit was found with the unloader brace. In a randomized

crossover trial, 12 patients with varus osteoarthritis were given a simple hinged

brace or an unloader brace during two six-month periods. Because patients acted as

their own controls, it was possible to identify statistically and clinically

significant benefits for the unloader brace that were greater than those of the hinged

brace despite the small number of patients involved in the study.5 The American

Academy of Orthopaedic Surgeons recommends unloader braces for the reduction of pain

in patients with osteoarthritis of the knee.6 This conservative option is thought to

extend the time before patients need to undergo knee arthroplasty; it also can be

considered for those who are not candidates for surgery.

ANTERIOR KNEE PAIN BRACE

Anterior knee pain, also called patellofemoral pain syndrome (PFPS), is a common

complaint among young, active patients. Its etiology is multifactorial and

controversial, and the treatment can be frustrating for the physician and the patient.

Braces have been developed to address the most commonly accepted etiology:

malalignment of the patellofemoral joint. Typically, these braces are made of neoprene

or a similar elastic material, with additional straps or a buttress for patellar

support. The buttress can be circular, C-shaped, J-shaped, or H-shaped to help

maintain tracking of the patella in the femoral groove. These braces are reasonably

priced, and off-the-shelf models are adequate (Figure 2).

Evidence of the effectiveness of braces for treatment or prevention of PFPS is

limited because of methodologic differences and shortcomings across studies. Two

systematic reviews published in 2002 and 2003 concluded that, because of the low

quality of available studies, there is insufficient evidence to support or to

discourage the use of patellar bracing for PFPS.7,8 Likewise, an American Academy of

Pediatricians technical report stated that there is no scientific evidence to support

the use of knee sleeves.

Two studies, published after the systematic reviews, produced contradictory

results.10,11 In one small, anatomic study using magnetic resonance imaging,

researchers examined patellar alignment, patellofemoral joint contact area, and pain

response in patients with and those without bracing.10 They found significant changes

in contact area and improvement in pain in the braced group but little change in

patellar alignment. In a prospective randomized clinical trial published in 2005,

researchers randomized 136 patients with anterior knee pain to treatment with home

exercises, patellar bracing, exercises plus bracing, or exercises plus knee sleeve,

and found no difference in pain ratings between the four groups after 12 weeks.11

Small studies on military recruits have reported a decrease in the incidence of

anterior knee pad

with patellar bracing.12,13

Because of the limited data and lack of clear recommendations and consensus on the

effectiveness of patellar braces for the treatment or prevention of anterior knee

pain, decisions regarding their use must be made on an individual basis. Some patients

may feel benefits; therefore, patients should be told that study results are

inconclusive or mixed. A therapeutic trial of braces may be worthwhile because the

braces are not expensive and no harmful effects have been found. Nonetheless, a brace

is no substitute for a good rehabilitative program that includes strengthening,

range-of-motion, and proprioceptive exercises.14–17

KNEE IMMOBILIZER

Complete immobilization of the knee for an extended period is generally

contraindicated because of the prolonged stiffness, muscle atrophy, and chronic pain

that result. However, there are exceptions. Indications for the use of a knee

immobilizer (Figure 3) include the acute (or presurgical) management of quadriceps

rupture, patellar tendon rupture, medial collateral ligament rupture, patellar

fracture or dislocation, and a limited number of other acute traumatic knee injuries.

The duration of immobilization and management of these conditions is variable and

beyond the scope of this article.

Other knee braces include prophylactic braces designed to prevent or limit the

severity of knee injuries. These braces are used commonly by football players to help

protect against medial collateral ligament injury. Functional knee braces are designed

to provide stability to a ligament-deficient knee (e.g., in a patient with an anterior

cruciate ligament tear before surgery) and also can be used for postsurgical repair.

Rehabilitative knee

sleeve
are used postoperatively to allow protected range of motion.6

Recommendations for the proper selection and use of these braces are highly variable,

complex, and often inconsistent; the choice seems to be based on anecdotal experience

and trial and error.

Ankle Braces

Ankle sprains are one of the most common acute musculoskeletal injuries. The

treatment of lateral ankle sprains can be confusing because of the many braces and

splints that are available for this injury. Ankle braces can be divided into two

categories: rigid and functional. Rigid braces essentially immobilize the entire

ankle. Functional braces, which include semirigid (e.g., Aircast) and soft, lace-up

braces, allow some plantar and dorsiflexion at the ankle while controlling for

inversion and eversion. Semirigid braces are made of thermoplastic contoured lateral

stirrups lined with air-filled foam pads for support of the medial and lateral

malleoli. Supplemental air can be added to these air cells through an inlet port.18

Soft, lace-up braces are usually made of canvas. Semirigid stirrup braces restrict

ankle inversion and eversion more than lace-up braces19 (Figures 4 and 5). External

ankle support also has been shown to improve proprioception, an important component in

the reduction of recurrent ankle sprains.

Complete immobilization of the ankle following an acute ankle sprain is no longer

recommended. Early mobilization using functional treatment is preferred.20 A Cochrane

systematic review concluded that treatment of acute ankle sprains with functional

braces leads to better outcomes (e.g., shorter time taken to return to work or sport,

less swelling and instability, greater overall satisfaction) compared with

immobilization.21

A systematic review identified nine randomized trials that compared different

functional treatment strategies (e.g., lace-up or semirigid brace, elastic bandage)

for acute lateral ankle ligament injuries.20 Because of the variety of treatments and

inconsistently reported follow-up times, the most effective functional treatment brace

could not be identified. However, lace-up ankle braces more effectively reduced

short-term swelling than did semirigid ankle braces. The most recent randomized

controlled study, published in 2005, demonstrated improvement in ankle joint function

after a moderate to severe inversion injury using a semirigid (Aircast) brace.18 Thus,

the evidence supports a functional treatment approach to inversion ankle sprains with

the use of a semirigid or soft, lace-up brace.

PROPHYLACTIC ANKLE BRACES

Multiple studies have evaluated the effectiveness of ankle braces for the

prevention of ankle sprains. There is good evidence that semirigid braces help to

prevent ankle sprains during high-risk sports such as soccer and basketball. According

to a Cochrane systematic review, patients with a history of ankle sprain can be

advised that wearing such a brace reduces their risk of future ankle sprains.22

Few studies recommend the duration for which [url=http://www.jjsports-

medical.com/wrist-support/wrist-brace/]wrist brace[/url] should be used. However, one

systematic review on the prevention of ankle sprains in sports recommends that

patients who sustain moderate or severe ankle sprains should wear an ankle brace

during sports activity for at least six months following the injury.23

Wrist splints

Carpal tunnel syndrome is a common compression neuropathy, often treated initially

with a splint to relieve pressure on the median nerve. Few recent studies have

addressed the effectiveness of wrist splints in the treatment of carpal tunnel

syndrome, and no randomized controlled trials have compared wrist splinting with no

treatment. One systematic review concluded that there is limited evidence to support

the use of splinting for up to six months,24 whereas a second review found that a hand

brace improved symptoms and function after four weeks.25

There are various options when prescribing a wrist splint, including neutral

versus cock-up (extension) splints, nighttime versus full-time wear, duration of wear,

and custom versus prefabricated splints. One prospective study found that neutral

splints relieved symptoms more than cock-up splints (20 degrees of extension).26 The

authors also found that symptom relief was evident in the first two weeks of wearing

the splint; no additional improvement was noted between weeks 2 and 8 of wear.26 The

first long-term prospective randomized study to compare nighttime splint wear with

steroid injection found improvements in symptoms as well as motor and sensory nerve

conduction velocities after one year of wearing a splint at night.27 Another

randomized clinical trial, comparing symptoms and functional deficits in nighttime

versus full-time splint wear, found the most significant improvements at six-week

follow-up in the group instructed to wear the splints full-time.28

Splints come with a dorsal or volar compartment in which metal or thermoplastic

inserts can be placed. It is easier to mold a custom insert than it is to mold a

prefabricated metal one29 (Figure 6). When fitting a prefabricated wrist splint, it is

important to observe the wrist position, because off-the-shelf wrist splints may have

significant extension. Prefabricated splints, which tend to be more rigid and less

comfortable than thermoplastic custom splints, typically are made to have 10 to 30

degrees of extension. Patients wearing prefabricated splints should return with the

splint so that the angle can be adjusted to the neutral position if necessary.

Researchers suggest that prefabricated splints must be adjusted to the neutral

position in patients with carpal tunnel syndrome.
Geschlecht
keine Angabe
Dieses Mitglied war noch nicht im Forum aktiv.
Empfänger
dnfsdd880
Betreff:


Text:

Melden Sie sich an, um die Kommentarfunktion zu nutzen


Xobor Xobor Forum Software
Einfach ein eigenes Forum erstellen
Datenschutz